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The equations of the steady, adiabatic, one-dimensional flow of an equilibrium 
mixture of a perfect gas and incompressible particles, in constant-area ducts with 
friction, are derived taking into account the effects of gravity and of the finite 
volume of the particles. As is the case for a pure gas, the mixture is shown to be 
subject to the phenomenon of choking, and the possibility of an adiabatic heating of 
the mixture in a subsonic expansion is also theoretically predicted for certain flow 
inlet conditions. The model may be used to approximately describe the conditions 
existing in portions of volcanic conduits during the Plinian phases of explosive 
eruptions. Some results of the numerical integration of the equations for a typical 
application of this type are briefly discussed, thus showing the potential of the model 
for carrying out rapid analyses of the influence of the main geometrical and flow 
parameters describing the problem. A non-volcanological application is also analysed 
to illustrate the possibility of the adiabatic heating of the mixture. 

1. Introduction 
The flow of gas-particle mixtures in ducts is of interest for many engineering 

problems, and its analysis has been carried out by means of mathematical models of 
different complexity according to the specific application (see e.g. So0 1967 ; Wallis 
1969; Boothroyd 1971 ; and the reviews by Rudinger 1976 and Crowe 1982). 

The range of the flow inlet conditions (in terms of pressure and temperature), the 
geometry of the system, and the nature, amount, size and distribution of the 
particles conveyed by the gas, determine the applicability of the assumptions that 
characterize the various models. Thus both one-dimensional and two-dimensional 
treatments may be used, while the particles may be considered to be in 
thermomechanical equilibrium with the gas, or allowed to have a slip velocity and a 
temperature jump with respect to it. Particle interaction is normally neglected 
(although its effects have been taken into account by Doss 1985), while the volume 
of the particles has been shown by Rudinger (1965, 1970) to significantly influence 
the results when either the ratio of the gas density to the particle density, or the 
loading (i.e. the ratio between the mass flow of the particles and that of the gas) or 
both are sufficiently large. 

When compressible flows (whose main technical application has so far been the 
design of nozzles for solid rocket propulsion) are considered, friction a t  the duct walls 
is only rarely taken into account, while gravity forces are almost always neglected. 
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However, a very peculiar geophysical application exists in which neither wall 
friction nor gravity forces may be neglected, viz. the analysis of the vertical flow of 
gas-particle mixtures in long volcanic conduits during the so-called Plinian phases 
of certain explosive eruptions. 

These flows originate from the presence in the magmas of high quantities of 
dissolved volatiles, which, following the decompression caused by the initial opening 
of a fissure in the crust, give rise to a characteristic eruptive phenomenology (see e.g. 
Walker 1981 ; Wilson, Sparks & Walker 1980). In  particular, at a certain depth in the 
conduit bubbles nucleate and then grow until their further growth is inhibited by 
neighbouring bubbles, and disruption of the magma takes place (Sparks 1978). 
Above the disruption surface the magmatic fluid has turned into a gas conveying 
small particles, which may be liquid or partially solid, but which may be assumed to 
be incompressible. The size of these particles varies inversely with the intensity of the 
eruption; indeed, in a powerful one their mean dimension may be of the order of 0.1 
mm or even less (Wilson et al. 1980). 

The duration of these eruptive phases is typically of the order of hours, after which 
the supply pressure decreases and different scenarios may occur according to the 
particular situation. For instance, we may have the outflow of liquid magma, or 
phreato-magmatic phenomena involving explosive interactions between magmatic 
fluid and subterranean waters (Barberi et al. 1989). However, during the main part 
of the Plinian phases, the flow conditions may be regarded as slowly varying in time, 
so that a quasi-steady analysis may be appropriate. 

The modelling of all the details of the eruptive mechanisms is certainly a very 
difficult task, particularly if it is considered that many of the parameters 
characterizing the problem (like the geometry and friction coefficient of t$he conduit, 
the composition of the magmatic fluid and its initial conditions, etc.) may be 
estimated only with a large degree of uncertainty, and may vary during the eruption. 
However, even a simplified mathematical model capable of yielding predictions of 
the main physical quantities (like pressure distribution along the conduit, mass 
outflow in unit time, and velocity of the erupting fluid) as a function of the variation, 
in plausible ranges, of the above-mentioned parameters, might be of considerable 
help in the interpretation of the geological evidence. This is why several authors have 
tried to model the thermogasdynamic behaviour of the gas-particle mixtures flowing 
in volcanic conduits during Plinian eruptions, thus contributing to one important 
chapter of ‘Geological Fluid Mechanics ’, as Huppert (1986) called the application of 
fluid mechanics to problems in the geological sciences. 

For instance, by neglecting gravity, wall friction and volume of the particles, 
Kieffer (1982) was able to reduce the problem to the study of the one-dimensional 
isentropic flow of a ‘pseudogas’, which behaves like a perfect gas having 
characteristics dependent on the loading ratio of the mixture ; thus all the results of 
classical inviscid gasdynamics could be used. More specifically, by modelling the 
volcanic conduit as a long constant-section or slowly converging duct, with a much 
shorter rapidly diverging final crater, the mass outflow could easily be predicted, 
because the large ratios between the supply and the exit pressure assure the 
occurrence of ‘choked’ flow, with sonic conditions at the beginning of the crater. 
However, owing to the neglect of wall friction and of gravity (whose effect, as will be 
shown, is additive to that of friction in a vertical upward motion) this model leads 
to considerable overestimates of the mass outflow. Furthermore, if inlet pressures of 
hundreds of bars and high loading ratios are to be considered, the volume of the 
particles must be taken into account in order to avoid unrealistically high values of 
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the density of the mixture at the depths of the disruption surface (hundreds or 
thousands of meters) ; as a consequence, the gas-particle mixture can no longer be 
treated as a pseudogas. 

Wilson et al. (1980) and Wilson &, Head (1981) did take into account wall friction, 
gravity forces, finite volume of the particles and variability of the cross-section; 
however, they solved the problem by considering only the continuity and the 
momentum equations, and disregarding the energy equation thanks to the 
assumption of isothermal flow of the mixture under all conditions, i.e. for any 
geometry of the conduit and loading ratio. In  principle, this assumption seems to be 
less plausible than that which is made in the present work, i.e. that the good thermal 
contact between the gas and the highly fragmentated particles assures that the 
temperature of both phases is constantly the same, and that the mixture flows 
adiabatically through the duct. Indeed, it will be shown that for constant-area flows 
the temperature variation along the duct is very small if the loading ratio is 
sufficiently high. However, the same may not be necessarily true for varying-area 
conduits allowing expansions from subsonic to supersonic flow. Furthermore, the 
purpose of the present work is the derivation of a rigorous thermogasdynamic model 
which should be applicable to the flow of mixtures of a gas and small incompressible 
particles with any loading ratio, from the lowest extreme corresponding to a pure 
gas, up to the maximum value for which the particles are still fluidized, and 
discontinuities of the mixture may be neglected. 

In the following sections the characteristics and the thermodynamic properties of 
homogeneous gas-particle mixtures are first considered, and the conditions of 
applicability of the assumption of thermomechanical equilibrium are briefly 
discussed. The equations of the steady one-dimensional flow of an equilibrium 
mixture in a constant-area duct with friction are then derived, taking into account 
the effects of gravity and of the finite volume of the particles. After a critical analysis 
of the expressions giving the variation of the flow parameters along the duct, some 
results of the numerical solution of the equations of motion for various types of 
mixture and duct conditions are reported and discussed in detail. 

2. Characterization of the gas-particle mixture 
2.1. Thermodynamic properties 

The thermodynamic properties of a mixture of a gas and solid or liquid particles have 
been analysed by many authors (see e.g. Rudinger 1976). Here only the main results 
of these analyses will be described, attempting to point out the assumptions under 
which they may be derived. 

In  the present work, the following hypotheses are assumed to apply : 
(a) The mixture is homogeneous, and is composed of a gas phase and a condensed 

( b )  The mixture is chemically inert and there is no mass exchange between the 

( c )  The pressure of the mixture is uniform and equal to that of the gas phase alone. 
( d )  The temperature of the mixture is uniform, i.e. there is no temperature jump 

between the particles and the gas. 
(e) The gas phase, which is taken to be incondensible, follows the equation of state 

of a perfect gas, while the condensed phase is incompressible. 
(f) The condensed phase is not subject to any change of state, and the 

calorimetric coefficients of the two phases (and in particular their specific heats at 

phase in the form of particles uniformly dispersed in the gas. 

phases. 
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constant pressure and constant volume) are independent not only of pressure and 
volume, but also of temperature. 

Assumptions ( a d )  characterize the thermodynamic equilibrium of the mixture, 
while assumptions ( e )  and ( f )  define the behaviour of the two phases. Any state of 
the mixture may then be identified by means of two of the customary thermodynamic 
coordinates which are used for single-phase systems, viz. pressure, temperature and 
density. However, in order to completely describe the properties of the mixture, 
another variable defining its composition must be introduced. A convenient choice 
may be the mass fraction, #, defined as the mass of the condensed phase contained 
in unit mass of the mixture. Indeed, thanks to assumption ( b ) ,  $ remains constant 
during any thermodynamic process of the mixture, considered as a closed system, so 
that the mixture is again a system defined by two independent coordinates ; this is 
why # may be more appropriate than other variables defining the composition, like 
the void fraction (i.e. the volume occupied by the gas in unit volume of the mixture) 
or the concentrations (i.e. the mass of each phase in unit volume of the mixture), 
which would not be constant. 

If p g  and pp are the densities of the gas phase and of the particles, respectively, the 
density of the mixture, p,, may then be obtained from the relation 

By using assumption ( e ) ,  the equation of state of the mixture becomes 

where R, is defined, as a function of the gas-phase constant, R,, by 

R,= ( l - $ ) R g ,  (3) 

As for the specific heats of the mixture, i t  is easy to obtain 

where the suffix g refers to the gas phase, and C is the specific heat of the solid 
particles. 

From (2) it  is apparent that when the volumetric fraction of the particles may be 
neglected (i.e. when $(pm/pp) -+ 1 )  the equation of state of the mixture becomes 
equivalent to that of a ‘perfect pseudogas’, with a modified gas constant R, 
connected with the composition of the mixture through (3) (Wallis 1969; Kieffer 
1982). 

The differentials of the most important state functions of the mixture, i.e. internal 
energy, enthalpy and entropy, are then 

durn = CUmdT, (6) 
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The equations describing the main thermodynamic transformations of the mixture 
may easily be derived from these expressions. In particular, the equation of an 
isentropic process, as a function of pressure and density, may be written 

Another quantity of great interest is the velocity of sound of the mixture. If we 
assume that the hypothesis of thermodynamic equilibrium of the mixture is strictly 
satisfied even in presence of small perturbations, then the velocity of sound of the 
mixture corresponds to 

so that the following expression is obtained from (9) : 

am = PP/~P~),,,,I’ (10) 

It is easy to show that the velocity of sound defined by (10) is always lower than 
that of the pure gas phase a t  the same conditions, i.e. 

a, < a, = (k, R, T):. 

The problem of the definition of the velocity of sound in a gas-particle mixture is 
widely discussed in the literature (see Wallis 1969; Marble 1970; Boothroyd 1971). 
Indeed, in a generic gas-particle mixture the velocity and the temperature of the 
particles may differ from those of the gas ; as a consequence, four possible definitions, 
corresponding to different conditions of thermodynamic equilibrium of the mixture, 
may be given for the velocity of sound. The definition of (10) is then adequate only 
for perturbations having relatively low frequency, which allow the complete 
thermomechanical equilibrium to be closely conserved ; conversely, for high- 
frequency perturbations the so-called ‘ frozen ’ velocity of sound (i.e. a,, which applies 
for the gas alone) would be more appropriate. However, for a deeper analysis of the 
significance of the various velocities of propagation of small perturbations in a 
gas-particle mixture with different degrees of equilibrium in the heat and momentum 
transfer between the two phases, reference should be made to Marble (1970). 

2.2.  Description of the jlow 
The motion of a gas-particle mixture may be studied by means of models of 

different complexity, but often the simpler ones are those that allow sufficiently 
general analyses to be carried out, without resorting to complex computer codes for 
the solution of each particular problem. The present analysis makes use of the 
homogeneous flow model, and is based on the following assumptions: (i) the flow is 
steady; (ii) the motion is one-dimensional; (iii) the flow is adiabatic in a constant- 
area duct; (iv) when vertical, the motion is upwards (i.e. opposite to the gravity 
force) ; (v) the particles are everywhere not only in thermal but also in mechanical 
equilibrium with the gas. 

The first three assumptions, together with the compressibility of the gas, are the 
basis of the classical gasdynamic treatment of the Fanno problem for a single-phase 
fluid. In  that problem the flow is generally horizontal, but a more complete 
treatment is available (Shapiro 1953) with which assumption (iv) may be taken into 
account. Finally, assumption (v), which is particularly restrictive, characterizes the 
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homogeneous nature of the two-phase flow, so that it is important to discuss the 
conditions for its applicability. 

The mechanical equilibrium is violated when accelerations and decelerations of the 
flow are present, and when there are external forces acting selectively on the two 
phases (e.g. the weight force) ; only if the motion were uniform could the velocities 
of the particles and of the gas be exactly the same. Indeed, the particles respond to 
accelerations and decelerations with an inertia that is different from that of the gas, 
so that the two phases acquire different velocities. It is exactly this difference which 
gives rise to the aerodynamic dragging of the particles, which in turn tends to restore 
the initial mechanical equilibrium. An estimate of the time necessary for restoring 
the equilibrium of the mixture is given by the aerodynamic response time of a single 
particle, 7, (also called velocity relaxation time). 

As already pointed out, the mechanical equilibrium may also fail owing to the 
presence of external forces. In  the case of vertical upward flow, the particles must 
necessarily have a velocity, V,, lower than that of the gas, V,, so that the consequent 
drag force may balance their weight. 

The knowledge of the relaxation time, T,, and of the dip velocity, I&- VJ ,  allows 
an appraisal to be carried out of how distant the two-phase flow is from mechanical 
equilibrium. For instance, if U is a characteristic velocity of the mixture (e.g. the 
mean velocity) and L is a reference dimension of the system (e.g. the length of the 
duct), the assumption of mechanical equilibrium will be applicable with increasing 
accuracy the more the following inequalities are satisfied : 

7, -G L / U ,  (12) 

Iv,-V,l4 u. (13) 

For isolated particles or for very dilute flows the slip velocity is of the order of the 
velocity of uniform fall of an isolated particle in the gas phase, known as terminal 
velocity V,, ; this may be evaluated, together with 7,, through appropriate relations 
taking into account the particle diameter, the flow conditions and the characteristics 
of the two phases (Wallis 1969; Rudinger 1976). 

I n  the flow of dense mixtures, however, the particles may be subjacted not only to 
wall-particle interference, but also to a t  least three types of mutual interaction 
(excluding electrical or gravitational effects) : (i) contact forces, (ii) collisions between 
the particles, and (iii) fluid dynamic interactions. 

Non-impulsive contact actions are due to an incomplete fluidization of the mixture 
and, as may be found in the literature (see e.g. Wallis 1969), may be neglected when 
the mixture is completely fluidized, i.e. for void fractions, E ,  larger than certain 
limiting values (for instance, for spherical indeformable particles the accepted 
criterion for fluidization is E > 0.4). Conversely, both the collisions between the 
particles and the fluid dynamic interactions might rigorously be neglected only for 
very dilute flows, with high void fractions (say E > 0.95). 

Some insight on the transport of dense gas-particle mixtures may be obtained 
from the literature on high-velocity fluidized beds and pneumatic conveying of 
particles (see e.g. Capes & Nakamura 1973; Leung & Wiles 1976; Yerushalmi, Turner 
& Squires 1976 ; Yerushalmi 85 Avidan 1985). The experimental investigations in 
these fields, which were mainly carried cut in small-diameter ducts a t  low gas 
velocities and a t  nearly atmospheric pressures, showed that backmixing and slip 
velocities up to one order of magnitude larger than the terminal velocities of the 
isolated particles may occur. This seems to be due mainly to duct wall influence and 
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to particle aggregation, with consequent formation of clusters (which increase the 
virtual diameter of the particulate and its effective terminal velocity). However, there 
is also evidence (Yerushalmi & Avidan 1985) that  a reduction of these effects is 
connected with increasing velocity, duct diameter and pressure, so that a t  the 
conditions typical, for example, of volcanological problems, considerably lower slip 
velocities might be expected. 

In  any case, owing to the increase of V,, with the diameter of the particles, a limit 
must be set to the maximum particle size for which an equilibrium flow model may 
be used. 

In  summary, adopting a usual approach for the analysis of gas-particle mixtures 
(Wallis 1969; Boothroyd 1971), in the present work it will be assumed that the effect 
of particle-wall and particle-particle interactions may be taken into account by 
means of an appropriate modification of the value of the friction coefficient a t  the 
duct walls, and that the mechanical equilibrium between the particles and the gas is 
fulfilled with sufficient accuracy provided conditions (12) and (13) are satisfied. 

Somewhat less complex is the analysis of the validity of the assumption of thermal 
equilibrium, i.e. that  the two phases be at the same temperature. Actually, thermal 
equilibrium might be rigorously maintained only if the phases were able to exchange 
heat instantaneously, with negligible temperature gradients. Clearly, this is 
physically impossible, and, if the compressible phase is subject to variations of 
velocity and, consequently, of temperature, the thermal equilibrium is broken ; 
however, the difference in temperature causes heat to be exchanged between the 
phases, so that there is an immediate tendency towards a restoring of the equilibrium 
condition. 

An estimate of the time necessary for equilibrium to be restored is given by the 
thermal relaxation time, +rT, which may be estimated with sufficient accuracy by 
assuming that the particles exchange heat with the gas only by conduction or 
convection (Rudinger 1976). Therefore, the condition for the correctness of the 
assumption of thermal equilibrium may be written, by analogy to the mechanical 
equilibrium case, 

TT 4 L / u  (14) 

It must be pointed out that rT and 7, are generally of the same order of magnitude, 
and that, consequently, conditions (12) and (14) are or are not satisfied 
simultaneously. 

3. Equations of motion 
The equations of motioh of the gas-particle mixture will now be written taking 

into account all the assumptions discussed in the previous section. 
If G ,  and G, are the mass flows per unit area of the condensed and of the gas 

phases, respectively, we may introduce, as a quantity characterizing the flow, the 
loading ratio 

7 = GpIG,. (15) 

An immediate consequence of the assumed steadiness of the flow is that 7 is 
constant along the entire length of the duct. Furthermore, thanks to the assumption 
of mechanical equilibrium between the gas and the particles, the loading ratio is 
connected with the mass fraction $ through the relation 

71 = $/(I  -$I. (16) 
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The equations of the one-dimensional, steady, adiabatic, upward vertical flow of 
an equilibrium gas-particle mixture in a constant-area duct may then be written in 
differential form as follows. 

dpm dV -+-= 0 ;  
P m  V 

( a )  mass balance : 

( b )  momentum balance : 

(c) energy balance : 

where V is the velocity of the mixture, D is the hydraulic diameter of the duct, f its 
friction coefficient = T ~ / ( & ~  V‘), and z is the (always positive) coordinate, in the 
direction of motion. As only upward vertical flow is considered, a positive sign was 
taken in front of the gravity term; should downward motion be of interest, it  should 
be replaced with a negative sign and the following discussion should be modified 
consequently. Conversely, the case of horizontal flow can immediately be obtained 
from (18) and (19) by considering the particular case g = 0. 

By introducing now all the constitutive equations that follow from the 
thermodynamic analysis of the mixture, further differential equations can be 
derived, which are more suitable for a detailed discussion of the characteristics of the 
motion. To this end it is useful to introduce the Mach number of the mixture, defined 
as M = V/a,, so that, after some algebraic manipulation (see Buresti & Casarosa 
1987) the following equations may be obtained : 

From these equations, useful indications of the variation of the various quantities 
along the duct may easily be derived. Indeed, as k, > 1 and pm < pp always, we have 

M < 1  M > 1  
dV/dz > O  < O  

dp/dz < O  > O  

Therefore, as is the case for the flow of a perfect gas in a horizontal constant-area 
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duct, the upward vertical flow of an equilibrium gas-particle mixture is subject to 
the phenomenon of choking, i.e. for any subsonic or supersonic initial Mach number 
there is a maximum value of the length L of the duct (or, more precisely, of the 
quantity 4fLID) for which a solution is possible, and in that condition the outlet 
Mach number is equal to 1 .  Conversely, for a given duct geometry and friction factor, 
if the ratio of the outlet to the inlet pressures, p2/pl, is successively decreased, the 
mass flow increases up to  a maximum, which is reached for a critical value of the ratio 
p2/pl, while further reduction of the outlet pressure does not modify the conditions 
in the duct. 

The discussion of the temperature variation is somewhat more involved. To this 
end i t  is useful to introduce the limit temperature 

and the limit Mach number 

It should be pointed out that these two quantities are functions of the local 
conditions of the mixture (as this is the case for pm), so that they vary along the duct. 

It is then easy to recognize (Buresti & Casarosa 1987) that when T < TL we have 
dT/dz < 0 for M < 1 and dT/dz > 0 for M > 1.  

Conversely, if the temperature of the mixture is larger than the limit temperature, 
i.e. T > TL, then we may identify two Mach numbers 

ML1 = ML{ 1 - [ 1 - (TJT)]i}', 

ML2 = ML{ 1 + [ 1 - (TL/T)]'}' 

(26) 

(27) 
satisfying the conditions 0 < ML1< ML2 < 1 

and such that we have for the temperature gradient along the duct 

M<ML1 M=ML1 MLl<M<MLZ M=ML, M L , < M < l  M > 1  

= o  - dT < o  
dz 

> O  = o  < O  > O  

In  this case, the possibility of an adiabatic heating in subsonic flow is a rather 
singular result of the analysis, which derives from the form of the constitutive 
equations of the mixture. Indeed, a hint that particular conditions may exist for such 
a behaviour might have been derived from the fact that, as can immediately be seen 
from (71, the Joule-Thomson coefficient of the mixture (p  = (dT/dp),,) is always 
negative. 

Finally, when the local temperature of the mixture equals the limit temperature, 
we have 

T = TL *ML1 = ML2 = ML 

and the result is again similar to that of the first case, save for the condition 
M = ML, for which the temperature gradient is zero. 

The results obtained for upward vertical motion may be applied to the case of a 
horizontal duct by putting g = 0 in all the relevant relations. As may easily be 
noticed, the qualitative conclusions on the velocity and pressure gradients remain 
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valid, even if (20) and (21) show that the absolute values of the gradients are lower 
in the horizontal flow case. As regards the temperature gradient, it may be observed 
that for a horizontal duct the limit temperature vanishes, i.e. we have 

9 = 0*TL = 0;  ML1 = 0;  

so that the condition T > TL is always satisfied and, for low Mach numbers 
(0 < M < M,,), the adiabatic subsonic heating of the flow takes place. 

It is interesting to  note that this result on the temperature gradient in horizontal 
motion would not have been found had the volume of the particles been neglected, 
i.e. if we had assumed pm/pp = 0 ;  indeed, it is easy to ascertain that this neglect 
would lead to the incorrect conclusion that dT/dz is always < 0 for M < 1. 

Finally, (23) demonstrates that the entropy gradient in the direction of motion is 
always positive, both for subsonic and for supersonic flow; furthermore, it is 
apparent that it depends only on the friction parameter and on the thermodynamic 
condition of the mixture, so that its expression is formally the same for horizontal 
and vertical flow. 

Equations (20)-(23) cont,ain, as tt particular case, those of the classical Fanno 
problem for the horizontal flow of a perfect gas (Shapiro 1953), which can be 
retrieved by putting g = 0 and 7 = 0, and remembering that in that casc the values 
of p,, a,, R, and k, reduce to those of the gas alone. It may also be interesting to 
point out again that if the volume of the particles is neglected (i.e. if we put pp = oc)) 
the equations for the mixture are formally identical to  those of a perfect gas with 
thermodynamic properties modified according to the particle loading ; obviously, this 
fact considerably simplifies the treatment of the problem. 

It may be expedient to introduce, by differentiating the definition of the Mach 
number, this additional equation 

ML2 = M,v'2, 

dM - dV 1dT 7 p dp, 
M V 2 T  l + y p p R , T p , '  
- - 

Following now the classical procedure of Shapiro, the simultaneous equations (17), 
(20), (21), (22) and (28) may be solved by using the Mach number as the independcnt 
variable, and by treating the quantity 4fz/D as one of the unknowns ; the equations 
may then be integrated between two generic values of the Mach number. To this end, 
it is useful to recast the equations in the following form: 
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The main difference between the classical Fanno problem for a perfect gas and the 
present case is that now it is not possible to manipulate the equations to obtain the 
variation of each of the unknowns as a function of the Mach number alone; 
consequently, the conditions along the duct are defined not only by the initial and 
final values of the Mach number, but also by the initial conditions of the flow in terms 
of pressure and temperature. The integration of the equations must then be carried 
out numerically, by giving the inlet values of pressure and temperature, pi and T,, 
together with the loading ratio 7 and the characteristics of the gas and particle 
phases. As an output, the variation of all the flow quantities along the duct can be 
obtained, so that parametric analyses for different geometries and inlet conditions 
can easily be carried out. 

4. Applications 
Some examples of application of the model to conditions which may be considered, 

though not exclusively, of volcanological interest, will now be described.. 
The set of differential equations (29)-(33) was numerically solved to obtain the 

upward motion of a gas-particle equilibrium mixture in a constant-area duct. To this 
end, a computer program based on a multistep Runge-Kutta algorithm was 
developed. The program may be applied both to subsonic and supersonic flow; 
however, only applications to cases with initial subsonic Mach number will be 
discussed. All the data obtained in the various simulations are described in detail by 
Buresti & Casarosa (1987) ; here only the most interesting results will be reported and 
analysed. 

To obtain the solution, the following quantities must be specified: the physical 
properties of the gas phase and of the particles, i.e. R,, p p ,  Cpg,  C; the friction 
parameter 4flD; the initial pressure and temperature of the mixture; the loading 
ratio 7;  the initial Mach number or the length of the duct. 

The solution is given in terms of pressure, temperature, density, velocity and Mach 
number of the mixture along the duct, and corresponds to unit Mach number a t  its 
final section, i.e. to ‘choked’ flow conditions. When the initial Mach number is given, 
the duct length corresponding to choked flow is obtained from the solution of the set 
of equations; conversely, when the duct length is fixed, we get the initial Mach 
number corresponding to subsonic choked flow. 

For the various mixtures that were analysed, the density and specific heat of the 
particles were assumed to be, respectively, p p  = 2600 kg/m3 and C = 837 J/kg K. 
These values are characteristic of the silicious materials typical of volcanic magmas, 
and were assumed to be independent, to a good approximation, of the temperature 
of the mixture. 

As regards the dimensions of the particles, i t  was assumed, in accordance with the 
values reported by Wilson et al. (1980), Rose (1987) and Macedonio, Pareschi & 
Santacroce (1988) for explosive Plinian eruptions, that their mean diameter be 
prevalently of the order of 0.1 mm or less. The gas phase of the mixtures was taken 
to be composed either of steam or of pure carbon dioxide; in particular, the first of 
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these gases is normally present in large quantities in the eruptions to  which the model 
may be applied (Kieffer 1982). The behaviour of mixtures of CO, and particles was 
analysed more to study the sensitivity of the solution to the nature of the gas phase 
than to consider a particular volcanological application. 

The specific heats of the gases wcre evaluated as a function of the initial 
temperature of the mixture by means of empirical correlations (Van Wylen & 
Sonntag 1976), and then assumed to be constant all along the duct during the 
thermodynamic process induced by the motion. This procedure was subsequently 
validated by the analysis of the calculated variation of the temperature along the 
duct ; indeed, the temperature differences between the initial and final sections of the 
duct were generally found to be limited to a few tens of degrees. However, if 
necessary, variations of the specific heats with the temperature along the duct might 
be introduced in the program without great difficulties. 

For mixtures having phases with the physical characteristics described above, 
calculations were performed for a duct of fixed length with different values of the 
most important parameters : the initial conditions of the mixture (pressure, 
temperature and, specially, loading ratio 7) and the characteristics of the duct, i.e. 
its attitude (vertical or horizontal) and the value of 4flD. 

Special care was taken to verify the fulfillment of the criteria for the acceptability 
of the assumptions on which the homogeneous flow model is based. As often happens 
with numerical models, this can only be done a posteriori, i.e. when, for instance, the 
values of the mean velocities along the duct are known from the solution of the 
problem. We may anticipate that, for the cases that were analysed, the assumption 
of thermomechanical equilibrium seems to be quite acceptable. Indeed, as shown by 
Buresti & Casarosa (19871, both the thermal and the mechanical relaxation times of 
the particles were found to be of the order of hundredths of seconds, while their 
residence time inside the duct was around ten seconds. Many of the mixtures that 
were analysed, while always being completely fluidized, cannot be classified as dilute, 
especially for high loading ratios. Nevertheless, even if the experimental data for the 
conveying of dense mixtures obtained in laboratory conditions were acritically 
applied to the analysis of the flow in volcanic conduits, the maximum slip velocities 
for particle diametcrs of the order of 0.1 mm would range between 1 % and 2 YO of the 
mean flow velocity. Therefore, taking also into consideration the observations of $2.2 
on the difference between the volcanological and the laboratory conditions, the 
conclusion can be drawn that a one-dimensional homogeneous equilibrium model 
may be sufficiently accurate for first-order predictions of the flow quantities, 
provided the obtained values are regarded as suitable cross-sectional averages. 

However, the serious objection may be raised that pyroclastic flows are not 
characterized by dimensional uniformity of the particulate ; on the contrary, at least 
a few large particles are probably present, which may give rise to disturbances and 
instabilities of the motion and, consequently, to a random unsteadiness of the flow. 
All these phenomena cannot be predicted by means of a homogeneous flow model ; 
nevertheless, the predicted motion may reasonably be expected to closely correspond 
to the mean motion of the real flow, particularly if the number of large pyroclasts, 
and the consequent unsteadiness, is sufficiently low. Obviously, care must be 
exercised when applying the model to cases in which the effects of inhomogeneity or 
unsteadiness of the flow may be important. 

The following basic condition was chosen as representative of a plausible 
volcanological application : vertical duct 1200 m in length, homogeneous mixture of 
particles and H,O, initial temperature of 850 "C, initial pressure of 33 MPa 
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(approximately corresponding to the lithostatic pressure a t  the depth of 1200 m) ; as 
regards the friction parameter 4f/D, the assumed basic value was 0.004 m-l. This 
choice derived from an analysis of possible friction coefficients for two-phase flows 
(Boothroyd 1971), and from the assumption that the diameter of the volcanic 
conduit be of the order of 10 m. Starting from this condition, the ‘choked ’ subsonic 
flow can be evaluated provided the values of the loading ratio are given, and an 
analysis of the importance of this parameter was then carried out. 

In  the volcanological literature values of the loading ratio as high as 25 are often 
considered, starting from the assumption that an estimate of 7 may be obtained from 
the void fractions present in ejected pumices. As most pumices probably derive from 
the liquid present in the interstices between the largest bubbles in the disrupting 
fluid, this entails the assumption that near the disruption surface the bubbles have 
the same velocity as the liquid magma. Indeed, before disruption the loading ratio 
may be roughly defined as 7 = (vl &)/(a,  V,), where vI and v, are the concentrations, 
and V, and V, are the cross-sectional average velocities of the liquid magma and of the 
gas, respectively. If the position of the disruption surface is stationary, the loading 
ratio is constant all along the duct. Now, as already pointed out, it  is reasonable to 
assume that sufficiently far above the disruption zone the velocities of the small 
magma particles and of the gas be practically equal, but below it, and particularly 
near the disruption surface, the velocity of the disrupting bubbles is probably 
considerably larger than that of the liquid magma, even taking the high viscosity of 
rhyolite5 into account. Consequently, the evaluation of the loading ratio from the 
pumice void fractions is likely to lead to  significant overestimates. 

If slightly unsteady conditions are considered, i.e. if, for instance, the disruption 
surface is allowed to slowly migrate up or down, the ratio of the concentrations in the 
pumices would have an even less immediate relation with the loading ratio. In  
practice, it does not seem impossible that a real degassing of the liquid magma takes 
place, producing a gas-particle mixture above the disruption level with a gas mass 
fraction that is significantly higher that that of the original liquid magma. 

Taking also into consideration possible non-volcanological applications, the 
following values of the loading ratio were then analysed : 7 = 2,5,10,15. For these 
conditions, Ofigures 1 4  describe the solution in terms of variations of pressure, 
temperature, density and velocity along the duct. As is apparent, the results confirm 
the predictions deduced from the discussion of (20)-(23). It should be noticed, in 
particular, that the monotonical decrease of the temperature for all the loading ratios 
is a direct consequence of the fact that the limit temperature TL, defined by (24), is 
much larger than the initial temperature of the mixture for all the cases considered 
(its minimum value being TL = 3688 K for 7 = 15). 

For the same values of the loading ratios, figure 5 shows the variation of the void 
fraction 8 along the duct ; as can be seen, for 7 = 15 the initial void fraction is close 
to the value of 0.75 a t  which, according to some authors (Sparks 1978; Wilson et al. 
1980) the disruption of the erupting magma takes place. 

To outline concisely the influence on the flow solution of the simultaneous 
variation of different parameters, it may be useful, rather than giving a detailed 
description of the motion all along the duct, to refer to global quantities, like the 
mass flow rate per unit area, and the pressure drop between the initial and the final 
cross-sections of the duct. 

Considering the uncertainty with which the friction coefficient and the diameter of 
the conduit can be predicted in volcanological applications, the first parameter 
whose influence may be analysed is the quantity 4f/D, which was successively given 
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FIGURE 1.  Pressure variation along the duct for various loading ratios : 0 , ~  = 2 ; A, 5 ; , 10 ; 
A, 15. Vertical choked flow. L = 1200 m ;  gas phase: H,O; pp = 2600 kg m-3;  .Ir: = 850 "C; 
p, = 33 MPa; 4flD = 0.004 m-l. 
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FIQURE 2. Temperature variation along the duct for various loading ratios. Flow conditions 

and symbols as in figure 1 .  

the values 0.002, 0.004 and 0.008 m-'. The corresponding results are shown as a 
function of the loading ratio in figures 6 and 7.  As can immediately be noticed, while 
the mass flow rate has a quite predictable qualitative behaviour, increasing with 
decreasing friction parameter and with increasing loading ratio, the same is not true 
for the pressure drop ; indeed, this quantity shows a minimum for non-zero values of 
the loading ratio. In  other words, the pressure drop may be lower for choked flows 
of moderately dilute gas-particle mixtures than for the choked flow of the gas phase 
alone, a t  equal values of the initial pressure and of the friction parameter. This result 
is probably due to the decrease of the velocity of the mixture along the duct 
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FIGURE 4. Velocity variation along the duct for various loading ratios. Flow conditions and 

symbols as in figure 1. 

(connected with the decrease of the velocity of sound) as 7 is increased. Indeed, as can 
be inferred from an analysis of the relevant equations (see Buresti & Casarosa 1987), 
for small values of the loading ratio this reduction outweighs the increase of the 
pressure drop due to the increase of 7 and to gravity; the effect is then expected to 
be even more pronounced in horizontal than in vertical flow. 

Keeping the friction parameter at the constant value of 0.004 m-l, the initial 
pressure was then varied between 25 and 41 MPa. At equal loading ratios, when the 
initial pressure is increased both the flow rate and the pressure drop increase as well, 
and in all cases the qualitative behaviour of the pressure drop as a function of the 
loading ratio is similar to that already found for an initial pressure of 33 MPa. An 
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FIGURE 6. Specific mass flow rate wa. loading ratio for various values of the friction parameter: 
0, 4f/D = 0.002 m-l; *, 0.004 m-l; 0.  0.008 m-I. 

interesting adimensional representation of these results may be given starting from 
the observation that in the classical Fanno problem for the motion of a pure 
gas (i.e. for 77 = 0) the specific flow rate and the pressure drop are directly 
proportional to the initial pressure. Figure 8 shows that similar conclusions can be 
reached for the gas-particle flow as well; indeed, within the range analysed, the 
ratios between the specific mass flow rate and the initial pressure and between the 
pressure drop and the initial pressure are almost coincident for the three initial 
pressures, as the differences, even if apparently not due solely to numerical errors, are 
certainly very small. This result may lead to considerable simplifications in the 
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possible application of the model to a quasi-steady analysis of the time-variation of 
the initial pressure during a volcanic eruption. 

It may be interesting, particularly from a fluid dynamic point of view, to analyse 
the sensitivity of the results to the neglect of the verticality of the flow and of the 
volume of the particles. The mass flow rate and the pressure drop obtained when 
these assumptions are made are compared with those of the reference case in figures 
9 and 10. 

As can be seen, the specific mass flow rate for horizontal flow is always larger than 
for vertical flow, at least in the range of loading ratios examined ; even if not apparent 



268 G. Buresti and C. Casarosa 

I I I 
0 5 10 15 

10 I - 

1 

FIGURE 9. Influence of the neglect of verticality and particle volume on the specific mass flow 
rate: 0,  vertical; A, horizontal; 0 ,  vertical, pp = co ; A, horizontal, p,, = m. Remaining flow 
conditions as in figure 1. 
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FIQURE 10. Influence of the neglect of verticality and particle volume on the pressure drop 
along the duct. Remaining flow conditions as in figure 1, and symbols as in figure I). 

from figure 9 owing to scale problems, this is also true for vanishing values of the 
loading ratio. Obviously, the result obtained for a horizontal duct and 71 = 0, i.e. for 
the pure gas phase, is coincident with that which may be obtained from the classical 
treatment of the Fanno problem (Shapiro 1953). The neglect of the volume of the 
particles leads to small overestimates of the specific mass flow rate in the case of 
vertical flow, while for horizontal flow the errors increase with increasing loading 
ratio, reaching a value around 10% in the range considered. 

As regards figure 10, the pressure drops are always lower for horizontal than for 
vertical flow. Furthermore, as already anticipated, the minimum in the curve is more 
evident for horizontal flow, with a considerable increase in the range of loading ratios 
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FIGURE 11 .  Influence of the nature of the gas phase on the specific mass flow rate (0, H,O ; , 
CO,) and on the pressure drop (A, H,O; A, CO,) along the duct. Remaining flow conditions as 
in figure 1.  

for which the pressure drop for the mixture is lower than that for the pure gas. When 
the volume of the particles is neglected, figure 10 shows that the pressure drop is 
underestimated, with a particularly large error for horizontal flow. 

To investigate the sensitivity of the solution to the nature of the gas phase, carbon 
dioxide was used instead of steam, keeping the characteristics of the particles and the 
flow conditions unchanged. Figure 11 shows the comparison of the specific mass flow 
rate and of the pressure drop along the duct obtained with the two gas phases. As is 
clear, the dependence of the results on the nature of the gas phase is remarkable. 
Particularly significant is the behaviour of the pressure drop; indeed, for CO, the 
minimum in the curve that was found for steam is still present, but is now confined 
to very small values of the loading ratio ( r ]  < 1) .  Furthermore, while for the pure gas 
phase (i.e. for r] = 0) the pressure drop is lower (even if only slightly) for CO, than for 
H,O, the situation is reversed for a gas-particle mixture of increasing loading ratio. 

This concludes the discussion on the application of the model to situations of 
volcanological interest. As already pointed out, the numerical results perfectly 
confirm the variations of the various quantities predicted in the previous section by 
analysing the structure of (20)-(23). However, the cases examined so far do not 
correspond to those that might show the peculiar heating of the mixture which was 
predicted to occur for subsonic adiaEatic flow, provided certain requirements on the 
initial conditions were satisfied. Therefore, it  was decided to analyse further cases, 
not relating to volcanological applications, chosen among those satisfying the 
aforesaid requirements. 

By taking, for instance, a mixture of air and siliceous particles with loading ratios 
of 2 and 5, a t  the initial temperature and pressure of 20 "C and 20 MPa, respectively, 
(24)-(27) give the results shown in table 1 for the initial section of a 100 mm diameter 
duct (4flD = 0.4 m-l). In  this case, the solution for the choked subsonic flow in a 
vertical 40 m long duct corresponds, for both values of r ] ,  to an initial Mach number 
lying well between MLl and ML2, so that the temperature along the duct now shows 
the expected unusual behaviour, documented in figure 12. The same result is 
obtained if a horizontal duct of the same length is considered. 
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71 Duct attitude T,(OK) M,,  ML2 

2 Vertical 51.84 0.0800 0.3629 
2 Horizontal 0 0 0.3716 
5 Vertical 13.46 0.0587 0.5413 
5 Horizontal 0 0 0.5445 

TABLE 1 

0 10 20 30 40 

2 (m) 
FIGURE 12. Temperature variation along a 40 m duct for two values of the loading ratio: 
0 , ~  = 2; 0 ,  5. Vertical choked flow. L = 40 m; gas phase: air; p p  = 2600 kg m-3; Ti = 20 "C; 
P, = 20 MPa; 4f/D = 0.4 m-l. 

Significantly different behaviour of the temperature may be found by varying the 
length of the duct, so that for short ducts (e.g. L < 8 m for 7 = 2 and L < 1.9 m for 
7 = 5 )  the adiabatic heating in the subsonic expansion disappears. For very long 
ducts (e.g. L 2 400 m) the situation becomes more involved, with numerous different 
cases whose detailed analysis is beyond the scope of the present work. 

5. Conclusions 
The analysis of the upward motion of gas-particle mixtures in long vertical ducts 

with friction is one of the many problems suggested by so-called Geological Fluid 
Mechanics, and stems from the desire to develop a model for the flow of magmatic 
fluid along volcanic conduits during certain phases of explosive eruptions. 

In the present work a simple approach to this problem was taken, i.e. the mixture 
was assumed to be composed of a perfect gas carrying incompressible particles in 
conditions of thermomechanical equilibrium ; furthermore, the flow was treated as 
one-dimensional, homogeneous, steady, adiabatic and only constant-area ducts were 
considered. With all these simplifications, the rigorous deduction of the equations of 
motion could be carried out, together with an exhaustive analysis of the local 
variations of the different flow quantities, such as velocity, pressure and temperature. 
It was then possible not only to show that choked flow may occur, similarly to what 
happens for a pure perfect gas in ducts with friction, but also to demonstrate the 
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possibility of a singular phenomenon, viz. the adiabatic heating of a mixture 
undergoing a subsonic expansion. 

The flow solutions obtained with the present model are self-consistent and, as a 
limiting case, contain the classical solution of the Fanno problem for a pure perfect 
gas. Obviously, the applicability of the model to the interpretation and prediction of 
physical phenomena (either of volcanological nature or relating to technical problems 
of different origin) is dependent on the degree of fulfillment of the assumptions on 
which the model itself is based, and it would be desirable to verify the range of 
validity of the present analysis through comparison of its results with experimental 
evidence. Unfortunately, this is not possible owing to the lack of relevant accurate 
data in the literature; it is hoped that this situation may change in the near future. 

As regards the description of eruptive phenomenologies, it  is reasonable to 
maintain that the present analysis may represent a first approximation to the 
modelling of the flow of fragmentated magmatic fluid (which is characteristic of the 
Plinian phases of explosive eruptions) in the portion of the volcanic conduit from the 
disruption level up to the beginning of the crater. The model permits rapid analysis 
of the influence of the variation of the initial flow conditions (in terms of pressure and 
temperature at the disruption level), as well as of parameters like conduit diameter, 
length and wall friction. Furthermore, if a model giving the evolution of the 
conditions in the liquid, nucleating and disrupting magma as a function of mass 
outflow is available, the time variation of the flow conditions along the duct may be 
obtained for the time interval for which quasi-steady flow can be assumed to apply. 
The analysis can easily be extended to take into account a gradual variability of the 
cross-section of the conduit, which might significantly alter the choked flow 
conditions near the exit of the duct. 

As for the crater, i.e. the terminal rapidly diverging part of a volcanic conduit, this 
typical geometric feature may allow the expansion to proceed to supersonic 
conditions and the exit pressure to drop to values that are nearer to the atmospheric 
pressure. Owing to the rapid variation of the cross-sectional area, the applicability 
of the assumption of one-dimensional flow may be more questionable in this region, 
particularly for gas-particle mixtures with high loading ratios, so that the present 
mathematical model, even if i t  were generalized to take the variation of the cross- 
section into account, might be applied to this portion of the duct only with great 
caution. 

Many further improvements in the model may be envisaged, like the introduction 
of non-equilibrium between the gas and the particles, or the inclusion of time- 
dependent phenomena. Anyway, the model should be regarded as but one of the 
several building blocks which must be available to develop more comprehensive and 
refined mathematical models tentatively aimed at  reproducing the various complex 
scenarios of volcanic eruptions. 

The present work was financially supported by the Consiglio Nazionale delle 
Ricerche, Gruppo Nazionale per la Vulcanologia. 
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